A Short Proof of the Birkhoff-von Neumann Theorem

نویسندگان

  • GLENN HURLBERT
  • G. Hurlbert
چکیده

The Birkhoff-von Neumann Theorem has been proved many times in the literature with a number of different methods, some inductive, some constructive, some existential. We offer a new proof that is a little more direct than most, though nonconstructive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathema Tics: E. Hille

from which, dividing through by N, and letting N -a, we will get X(h) . a(h) en(h) e. Now letting e -O 0, the proof is complete. The proof of (E) reproduces the combinatorial essence of G. D. Birkhoff's proof of the Strong Ergodic Theorem.2 We rely on the fact that the "components" of h form a Boolean algebra, and may be treated like sets. 1 L. Kantorovitch. "Lineare halbgeordnete Raume," Math....

متن کامل

On New Forms of the Ergodic Theorem

We present generalizations of the classical Birkhoff and von Neumann ergodic theorems, where the time average is replaced by a more general average, including some density.

متن کامل

Minimum Birkhoff-von Neumann Decomposition

Motivated by the applications in routing in data centers, we study the problem of expressing an n × n doubly stochastic matrix as a linear combination using the smallest number of (sub)permutation matrices. The Birkhoff-von Neumann decomposition theorem proves that there exists such a decomposition, but does not give a representation with the smallest number of permutation matrices. In particul...

متن کامل

A SHORT PROOF FOR THE EXISTENCE OF HAAR MEASURE ON COMMUTATIVE HYPERGROUPS

In this short note, we have given a short proof for the existence of the Haar measure on commutative locally compact hypergroups based on functional analysis methods by using Markov-Kakutani fixed point theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012